1.小学生奥数思维训练题及答案大全 篇一
乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。解:以甲数为7份,则乙、丙两数共13×2=26(份)
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:7。
2.小学生奥数思维训练题及答案大全 篇二
小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米)。
3.小学生奥数思维训练题及答案大全 篇三
甲乙丙丁各自参加篮球、排球、足球和象棋。现在知道:(1)甲的身材比排球运动员高。(2)几年前,丁由于事故,失去了双腿。(3)足球运动员比丙和篮球运动员都矮。猜猜就甲乙丙丁各参加什么项目? 答案:由(2)可知丁肯定是象棋运动员,由(1)(3)可知甲不是排球和足球运动员,那么甲只能是篮球运动员,由(3)可知丙不是足球运动员,那么只能是排球运动员了,剩下的乙就是足球运动员了。
4.小学生奥数思维训练题及答案大全 篇四
一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
5.小学生奥数思维训练题及答案大全 篇五
甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。求此圆形场地的周长。 解答:第一次相遇时,两人合走了半个圆周;第二次相遇时,两人又合走了一个圆周,所以从第一相遇到第二次相遇时乙走的路程是第一次相遇时走的2倍,所以第二次相遇时,乙一共走了100×(2+1)=300米,两人的总路程和为一周半,又甲所走路程比一周少60米,说明乙的路程比半周多60米,那么圆形场地的半周长为300-60=240米,周长为240×2=480米。
6.小学生奥数思维训练题及答案大全 篇六
一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?解析:根据只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。
解:(40÷5)×(40÷8)=40(平方米)
答:平行四边形地原来的面积是40平方米。
7.小学生奥数思维训练题及答案大全 篇七
已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
8.小学生奥数思维训练题及答案大全 篇八
甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
9.小学生奥数思维训练题及答案大全 篇九
有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:
14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
10.小学生奥数思维训练题及答案大全 篇十
妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
答:每支铅笔0.2元。
11.小学生奥数思维训练题及答案大全 篇十一
找规律填空(1)47,43,39,35,(),(),()
(2)1,4,16,64,(),()
(3)60,50,(),(),20,()
(4)4,8,10,10,16,12,(),(),()
【答案解析】
(1)等差数列,公差为4,填31,27,23
(2)前一项乘以4得后一项,是等比数列,填256,1024
(3)等差数列,公差为10,填40,30,10
(4)双重数列,填22,14,28
12.小学生奥数思维训练题及答案大全 篇十二
一个长方形的周长是正方形的2倍,正方形的边长与长方形的宽都是4厘米。长方形的长是多少厘米?思路导航:根据长方形的周长是正方形的2倍,我们就应先求出正方形的周长,然后根据它们之间的关系,求出长方形的周长,再求出长方形的长。
(1)正方形的周长:4×4=16厘米
(2)长方形的周长:16×2=32厘米
(3)长方形的长:32÷2-4=12厘米。
13.小学生奥数思维训练题及答案大全 篇十三
兄弟两人以每分60米的速度同时结伴从家出发去学校。5分钟后哥哥发现文具盒忘带了,以每分钟100米的速度回家,取了文具盒立即再以每分钟100米的速度往学校赶,结果正好在校门口追上弟弟。兄弟两人的家距他们的学校多少米?【解析】在这题中,当哥哥第二次从家出发时,弟弟已经走了5分钟以及哥哥返回家中的时间,哥哥返回家用了60×5÷100=3(分钟),所以弟弟就在哥哥前面60×(5+3)=480(米),这就是追及路程,从而就可以求到哥哥追上弟弟的时间,再求出路程。
【解答】60×5÷100=3(分钟)
60×(5+3)=480(米)
480÷(100-60)=12(分钟)
100×12=1200(米)
答:兄弟两人的家距他们学校1200米。
14.小学生奥数思维训练题及答案大全 篇十四
已知:△+☆=12,△=☆+☆+☆,求:△=?☆=?思路导航:因为△+☆=12,而△=☆+☆+☆,所以☆+☆+☆+☆=12,4个☆等于12,所以☆=12÷4=3,因为△+☆=12,☆=3,所以△=12-3=9(或△=☆+☆+☆=3+3+3=9)
解:△=9,☆=3
15.小学生奥数思维训练题及答案大全 篇十五
盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?思路导航:如果每次拿2个球会有三种情况:(1)一个白球,一个红球;
(2)两个白球;
(3)两个红球。不能保证一次能拿出两个同颜色的球。
如果每次拿3个球会有四种情况:
(1)一个白球,两个红球;
(2)一个红球,两个白球;
(3)三个白球;
(4)三个红球。这样每次都能保证拿出两个同颜色的球,所以至少要拿出3个球。
16.小学生奥数思维训练题及答案大全 篇十六
有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。解:设小筐装苹果X千克。
4X=2X+16
2X=16
X=8
8×2=16(千克)
8×4=32(千克)
答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。
17.小学生奥数思维训练题及答案大全 篇十七
李师傅把一根水管锯成3段,每锯1次用3分钟.他以同样的速度一口气锯了5根这样的水管,一共用了多长时间? “把一根水管锯成3段”,实际上是锯了3-1=2(次)。而锯1次水管要3分钟,那么锯1根水管就要2×3=6(分),而李师傅锯了5根这样的水管,一共用5个6分钟,就是5×6=30(分)。列式是:(3-1)×3=6(分),5×6=30(分)。
18.小学生奥数思维训练题及答案大全 篇十八
正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米。甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树)。操场四周栽了多少棵树? 答案:因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有9+4=13(棵)树。操场周围的`树一共有(13-1)×4=48(棵)。
19.小学生奥数思维训练题及答案大全 篇十九
小明有一些糖果,他把其中的1/4分给了小红,又把剩下的2/3分给了小李,小李一共得到了15颗糖果,小明原先有多少颗糖果? 答案:小明剩下的糖果=总数-分给小红的-分给小李的=总数-1/4×总数-2/3×总数=15颗糖果,解方程可得:总数-1/4×总数-2/3×总数=15,求解得:总数≈54.55颗糖果。
20.小学生奥数思维训练题及答案大全 篇二十
三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。