高一

首页>高一>导航 > 最新信息

高一上册数学函数模型及其应用知识点

2016-10-20 16:27:00 无忧考网

1.抽象概括:研究实际问题中量,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;
2.建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数 的解析式;
3.求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.
这些步骤用框图表示是:
例1.如图所示,在矩形ABCD中,已知AB=a,BC=b(b
解:设四边形EFGH的面积为S,
则S△AEH=S△CFG= x2,
S△BEF=S△DGH= (a-x)(b-x),
∴S=ab-2[ 2+ (a-x)(b-x)]
=-2x2+(a+b)x=-2(x- 2+ 
由图形知函数的定义域为{x|0
又0
则当x= 时,S有值 ;
若 >b,即a>3b时,
S(x)在(0,b]上是增函数,
此时当x=b时,S有值为
-2(b- )2+ =ab-b2,
综上可知,当a≤3b时,x= 时,
四边形面积Smax= ,
当a>3b时,x=b时,四边形面积Smax=ab-b2.
变式训练1:某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使 每天所赚的利润?并求出值.
解:设每个提价为x元(x≥0),利润为y元,每天销售总额为(10+x)(100-10x)元,
进货总额为8(100-10x)元,
显然100-10x>0,即x<10,
则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x<10).
当x=4时,y取得值,此时销售单价应为14元,利润为360元.
例2.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度
v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴
的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650km,试判断这
场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将
侵袭到N城?如果不会,请说明理由.
解:(1)由图象可知:
当t=4时,v=3×4=12,
∴s= ×4×12=24.
(2)当0≤t≤10时,s= •t•3t= t2,
当10
当20
综上可知s=
(3)∵t∈[0,10]时,smax= ×102=150<650.
t∈(10,20]时,smax=30×20-150=450<650.
∴当t∈(20,35]时,令-t2+70t-550=650.
解得t1=30,t2=40,∵20
∴t=30,所以沙尘暴发生30h后将侵袭到N城.
变式训练2:某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台 ,
需要加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函 数为R(x)=5x- (万元)(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)把利润表示为年产量的函数;
(2)年产量是多少时,工厂所得利润?
(3)年产量是多少时,工厂才不亏本?
解:(1)当x≤5时,产品能售出x百台;
当x>5时,只能售出5 百台,
故利润函数为L(x)=R(x)-C(x)
=
(2)当0≤x≤5时,L(x)=4.75x- -0.5,
当x=4.75时,L(x)max=10.78125万元.
当x>5时,L(x)=12-0.25x为减函数,
此时L(x)<10.75(万元).∴生产475台时利润.
(3)由
得x≥4.75- =0.1(百台)或x<48(百台).
∴产品年产量在10台至4800台时,工厂不亏本.
高一最新更新
推荐阅读
网站首页 网站地图 返回顶部
无忧考网移动版 m.51test.net